HF2: Derivatives and Integrals of Hyperbolic Functions

The hyperbolic functions are widely used in engineering, science and mathematics. This module discusses differentiation and integration of hyperbolic functions.
$\frac{d}{d x} \sinh (a x)=a \cosh (a x)$
$\int \cosh (a x) d x=-\frac{1}{a} \sinh (a x)+c$

Definitions

The basic hyperbolic functions are sinh and cosh and are defined as follows.

The hyperbolic sine function is

$$
\sinh (x)=\frac{e^{x}-e^{-x}}{2}
$$

It is pronounced as "shine x ".
The hyperbolic cosine function is defined as

$$
\cosh (x)=\frac{e^{x}+e^{-x}}{2}
$$

It is pronounced as " $\cosh x$ ".
In addition to these we also define

$$
\begin{aligned}
\tanh (x) & =\frac{\sinh (x)}{\cosh (x)} \\
& =\frac{e^{x}-e^{-x}}{e^{x}+e^{-x}}
\end{aligned}
$$

It is pronounced as "than x " where the "than" is pronounced as in "thank".

Just as for the circular functions, there are reciprocal hyperbolic functions. They are:

$$
\begin{aligned}
\operatorname{coshec}(x) & =\frac{1}{\sinh (x)} \\
\operatorname{sech}(x) & =\frac{1}{\cosh (x)} \\
\operatorname{coth}(x) & =\frac{1}{\tanh (x)}
\end{aligned}
$$

Derivatives of Hyperbolic Functions

The derivatives of the hyperbolic functions may be found using their definitions.

For sinh, let a be a constant, then:

$$
\begin{aligned}
\frac{d}{d x} \sinh (a x) & =\frac{d}{d x}\left(\frac{e^{a x}-e^{-a x}}{2}\right) \\
& =\frac{a e^{a x}+a e^{-a x}}{2} \\
& =a \cosh (a x)
\end{aligned}
$$

For cosh,

$$
\begin{aligned}
\frac{d}{d x} \cosh (a x) & =\frac{d}{d x}\left(\frac{e^{a x}+e^{-a x}}{2}\right) \\
& =\frac{a e^{a x}-a e^{-a x}}{2} \\
& =a \sinh (a x) .
\end{aligned}
$$

The quotient, product and chain rules can be applied to functions involving hyperbolic functions. For example, using the quotient rule,

$$
\begin{aligned}
\frac{d}{d x} \tanh (a x) & =\frac{d}{d x}\left(\frac{\sinh (a x)}{\cosh (a x)}\right) \\
& =\frac{d}{d x}\left(\frac{e^{a x}-e^{-a x}}{e^{a x}+e^{-a x}}\right) \\
& =\frac{\left(e^{a x}+e^{-a x}\right) \frac{d}{d x}\left(e^{a x}-e^{-a x}\right)-\left(e^{a x}-e^{-a x}\right) \frac{d}{d x}\left(e^{a x}+e^{-a x}\right)}{\left(e^{a x}+e^{-a x}\right)^{2}} \\
& =\frac{\left(e^{a x}+e^{-a x}\right) a\left(e^{a x}+e^{-a x}\right)-a\left(e^{a x}-e^{-a x}\right)\left(e^{a x}-e^{-a x}\right)}{\left(e^{a x}+e^{-a x}\right)^{2}} \\
& =\frac{a\left(e^{a x}+e^{-a x}\right)^{2}-a\left(e^{a x}-e^{-a x}\right)^{2}}{\left(e^{a x}+e^{-a x}\right)^{2}} \\
& =a-a \frac{\left(e^{a x}-e^{-a x}\right)^{2}}{\left(e^{a x}+e^{-a x}\right)^{2}} \\
& =a\left(1-\tanh ^{2}(a x)\right) \\
& =a \operatorname{sech}^{2}(a x) .
\end{aligned}
$$

In summary,

$$
\begin{aligned}
\frac{d}{d x} \sinh (a x) & =a \cosh (a x) \\
\frac{d}{d x} \cosh (a x) & =a \sinh (a x) \\
\frac{d}{d x} \tanh (a x) & =a \operatorname{sech}^{2}(a x)
\end{aligned}
$$

Example 1

Find the derivative, with respect to x, of $\cosh \left(x^{2}+3 x\right)$.

Solution:

Let $u=x^{2}+3 x$ then $d u / d x=2 x+3$ and by the chain rule,

$$
\begin{aligned}
\frac{d}{d x} \cosh \left(x^{2}+3 x\right) & =\frac{d}{d u} \cosh (u) \frac{d u}{d x} \\
& =\sinh (u)(2 x+3) \\
& =(2 x+3) \sinh \left(x^{2}+3 x\right)
\end{aligned}
$$

Hence the derivative, with respect to x, of $\cosh \left(x^{2}+3 x\right)$ is $(2 x+3) \sinh \left(x^{2}+3 x\right)$.

Example 2

Find the approximate slope of the tangent to $y=\sinh (4 x)$ at $x=0.5$ to three decimal places.

Solution:

Differentiating,

$$
\frac{d y}{d x}=4 \cosh (4 x)
$$

At $x=0.5$,

$$
\begin{aligned}
\left.\frac{d y}{d x}\right|_{x=0.5} & =4 \cosh (4(0.5)) \\
& =4 \cosh (2) \\
& =4\left(\frac{e^{2}+e^{-2}}{2}\right) \\
& =2\left(e^{2}+\left(\frac{1}{e^{2}}\right)\right) \\
& \approx 15.049
\end{aligned}
$$

The slope of the tangent is approximately 15.049 at $x=0.5$.

Integrals of Hyperbolic Functions

Let a be a constant. Using the definitions,

$$
\begin{aligned}
\int \sinh (a x) d x & =\int\left(\frac{e^{a x}-e^{-a x}}{2}\right) d x \\
& =\frac{\frac{1}{a} e^{a x}+\frac{1}{a} e^{-a x}}{2}+c, \quad c \in \mathbb{R} \\
& =\frac{1}{a} \cosh (a x)+c .
\end{aligned}
$$

Similarly,

$$
\begin{aligned}
\int \cosh (a x) d x & =\int\left(\frac{e^{a x}+e^{-a x}}{2}\right) d x \\
& =\frac{\frac{1}{a} e^{a x}-\frac{1}{a} e^{-a x}}{2}+c, \quad c \in \mathbb{R} \\
& =\frac{1}{a} \sinh (a x)+c
\end{aligned}
$$

For the integral of tanh, we use integration by substitution. Let $u=$ $\cosh (a x)$, then $d u / d x=a \sinh (x)$ and

$$
\begin{aligned}
\int \tanh (a x) d x & =\int \frac{\sinh (a x)}{\cosh (a x)} d x \\
& =\frac{1}{a} \int \frac{1}{\cosh (a x)} \frac{d u}{d x} d x \\
& =\frac{1}{a} \int \frac{1}{u} d u \\
& =\frac{1}{a} \ln (\cosh (a x))+c, \quad c \in \mathbb{R}
\end{aligned}
$$

Summarising

$$
\begin{aligned}
& \int \sinh (a x) d x=\frac{1}{a} \cosh (a x)+c \\
& \int \cosh (a x) d x=\frac{1}{a} \sinh (a x)+c \\
& \int \tanh (a x) d x=\frac{1}{a} \ln (\cosh (a x))+c .
\end{aligned}
$$

Example 3
Find $\int \cosh (3 x) d x$.

Solution:

$$
\int \cosh (3 x)=\frac{1}{3} \sinh (3 x)+c
$$

where c is a constant.

Example 4

Find the value of $\int_{0}^{\ln (2)} \sinh (x) d x$.

Solution:

$$
\begin{aligned}
\int_{0}^{\ln (2)} \sinh (x) d x & =[\cosh (x)]_{x=0}^{x=\ln (2)} \\
& =\cosh (\ln (2))-\cosh (0) \\
& =\frac{1}{2}\left(e^{\ln (2)}+e^{-\ln (2)}\right)-\frac{1}{2}\left(e^{0}+e^{-0}\right) \\
& =\frac{1}{2}\left(e^{\ln (2)}+e^{\ln \left(\frac{1}{2}\right)}\right)-1 \\
& =\frac{1}{2}\left(2+\frac{1}{2}\right)-1 \\
& =\frac{1}{2}\left(\frac{5}{2}\right)-1 \\
& =\frac{1}{4} .
\end{aligned}
$$

Example 5

Find $\int\left(12 x^{3}-2\right) \tanh \left(3 x^{4}-2 x\right) d x$.

Solution:

We use the substitution method. Let

$$
u=3 x^{4}-2 x
$$

then

$$
\frac{d u}{d x}=12 x^{3}-2 .
$$

Now, the integral may be written

$$
\begin{aligned}
\int\left(12 x^{3}-2\right) \tanh \left(3 x^{4}-2 x\right) d x & =\int \frac{d u}{d x} \tanh (u) d x \\
& =\int \tanh (u) d u \\
& =\ln (\cosh (u))+c^{\prime}, \text { where } c^{\prime} \text { is a constant. } \\
& =\ln \left(\cosh \left(3 x^{4}-2 x\right)\right)+c, \text { where } c \text { is a constant. }
\end{aligned}
$$

Hence
$\int\left(12 x^{3}-2\right) \tanh \left(3 x^{4}-2 x\right) d x=\ln \left(\cosh \left(3 x^{4}-2 x\right)\right)+c$, where c is a constant.

Exercises

1. Find the derivative, with respect to x, of
a) $y=6 \cosh (x / 3)$
b) $y=\frac{1}{2} \sinh (2 x+1)$
2. Evaluate:
a) $\int \cosh (3 x) d x$
b) $\int_{1}^{2} \frac{\cosh (\ln (t))}{t} d t$.

Answers

1. a) $2 \sinh (x / 3) \quad$ b) $\cosh (2 x+1)$
2. a) $\frac{1}{3} \sinh (3 x)+$ constant \quad b) 0.75
