www.rmit.edu.au/studyandlearningcentre

STUDY TIPS

ENST1.2: MOMENT OF INERTIA

Mass Moment of Inertia

Net force, mass and acceleration in linear motion have a rotational analogue – net torque, mass moment of inertia and angular acceleration respectively. Mass moment of inertia is a measure of the resistance offered by an object to rotational movement, e.g. the bending moment in a beam.

Rotational Motion $\Sigma \tau = I \times \alpha$

where $\Sigma \tau$ = net torque (Nm); I = mass moment of inertia (kgm²); α = angular acceleration (rad s⁻²).

Example

Calculate the mass moment of inertia of a flywheel that has a net torque of 15 Nm and an angular acceleration of 25 rads⁻²

Solution

$$\Sigma \tau = I \times \alpha \implies I = \frac{\Sigma \tau}{\alpha} = \frac{15}{25} = 0.6 \text{ kgms}^{-2}$$

The mass moment of inertia I of a rigid body m about an axis of rotation r is

Different objects have different moments of inertia, assuming uniform composition. For a flywheel (disc) $I = \frac{1}{2} \text{ mr}^2$, a cylinder $I = \frac{1}{2} \text{ mr}^2$, a thin hoop $I = \text{mr}^2$, and a rod with its axis of rotation at one end $I = \frac{1}{2} \text{ mr}^2$.

Radius of gyration

(Giancoli, G.C, 1991, Physics: principles with applications, Prentice-Hall)

Notice above that a thin hoop has the same moment of inertia as the general formula $I = mr^2$. With the hoop all the mass is concentrated at the same distance from the axis. The radius of gyration is a similar concept. It is a so-called "average radius" where all of the mass of an object is concentrated. For instance, the radius of gyration of a flywheel is $r/\sqrt{2}$. This means that if the entire mass of the flywheel was represented as a thin hoop, then the radius of that hoop would be $r/\sqrt{2}$, i.e. the radius would be smaller than the radius of the flywheel. The moment of inertia of any object can be written in terms of its radius of gyration, or

where k is the radius of gyration.

Second Moment of Area

The second moment of area, or moment of inertia, of an area element dA is defined as

about the X-axis

$$I_Y = \int_A x^2 dA$$

about the Y-axis

Example Pennsylvania State University (2010), viewed 3 Dec.2012, http://www.engr.bd.psu.edu/rxm61/MCHT111/Chapter%2010 Calculate the moment of inertia of the shaded area (light blue)

(a) about the X-axis.

Solution

Use a horizontal element (dark blue): $dA = (2-x) \times dy$

$$dA = (2 - x)dy = \left(2 - \frac{y^2}{2}\right)dy \qquad \text{since} \quad x = y^2/2$$

$$I_x = \int y^2 dA = \int_0^2 y^2 \left(2 - \frac{y^2}{2}\right)dy$$

$$I_x = \frac{2}{3}y^3 - \frac{1}{10}y^5 \Big|_0^2 = 2.13 \text{ m}^4$$

Note: A vertical element could be used above, however the calculations are harder.

(b) about the Y-axis.

Use a vertical element (dark blue): $dA = y \times dx$

$$I_{y} = \int x^{2} dA = \int_{0}^{2} x^{2} y dx \qquad \text{since} \quad y = \sqrt{2}x$$

$$I_{y} = \int_{0}^{2} x^{2} \left(\sqrt{2}x\right) dx = \sqrt{2} \int_{0}^{2} x^{2.5} dx$$

$$I_{y} = \frac{\sqrt{2}}{3.5} x^{2.5} \Big|_{0}^{2} = 4.57 \text{ m}^{4}$$

Note: A horizontal element could be used above, however the calculations are harder.

Second Moment of Area: Simple and Composite Shapes

(Ivanoff, V, 2010, Engineering Mechanics, McGraw-Hill)

Moments of inertia of simple geometrical shapes are shown below.

Shape	Area A	Position of Centroid	Centroidal moment of inertia I _C
Circle	$\frac{\pi d^2}{4}$	at centre	$\frac{\pi d^4}{64}$
Square	a²	at intersection of diagonals	a ⁴ 12
Rectangle	bh	at intersection of diagonals	bh ³ 12
Triangle h b b	<u>bh</u> 2	at intersection of medians ($\frac{1}{3}$ of altitude)	bh ³ 36

Parallel Axis Theorem

The moment of inertia about any other axis parallel to the centroidal axis is given by

$$I = I_C + Ad^2$$

where I is the moment of inertia about any axis; A is the area; d is the distance between the axes; I_C is the moment of inertia about the centroidal axis

Example Moment of inertia of a composite shape

Calculate the moment of inertia of the shaded area (below) about the X-axis

Solution

Note:

- Divide area into 3 rectangular elements A₁, A₂, and A₃.
- The centroids C of each are shown by the intersection of the diagonals for each rectangular element.
- d_1 , d_2 , d_3 are the distances from the centroid of each element to the X-axis.

Element	Area A	Distance d of X-axis from centroid	Centroidal moment of inertia $I_c = \frac{bh^3}{12}$	Transfer term Ad ²	Transferred moment of inertia $I = I_C + Ad^2$
1	30×20 =600	50	$\frac{30 \times 20^3}{12} = 20000$	600×50 ² =1500000	20000 + 1500000 = 1520000
2	30×10 =300	25	$\frac{10 \times 30^3}{12} = 22500$	300×25 ² =187500	22500 + 187500 = 210000
3	60×10 =600	5	$\frac{60 \times 10^3}{12} = 5000$	600×5 ² =15000	5000 + 15000 = 20000
	ı	1	1	$\Sigma I =$	1 750 000 mm ⁴

Answer: The total moment of inertia of the area about the X-axis is Σ I = 1 750 000 mm⁴